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Abstract
We propose a new method to maximize biomarker efficiency for detecting anatomical change over
time in serial MRI. Drug trials using neuroimaging become prohibitively costly if vast numbers of
subjects must be assessed, so it is vital to develop efficient measures of brain change. A popular
measure of efficiency is the minimal sample size (n80) needed to detect 25% change in a
biomarker, with 95% confidence and 80% power. For multivariate measures of brain change, we
can directly optimize n80 based on a Linear Discriminant Analysis (LDA). Here we use a
supervised learning framework to optimize n80, offering two alternative solutions. With a new
medial surface modeling method, we track 3D dynamic changes in the lateral ventricles in 2065
ADNI scans. We apply our LDA-based weighting to the results. Our best average n80—in two-
fold nested cross-validation—is 104 MCI subjects (95% CI: [94,139]) for a 1-year drug trial, and
75 AD subjects [64,102]. This compares favorably with other MRI analysis methods. The standard
“statistical ROI” approach applied to the same ventricular surfaces requires 165 MCI or 94 AD
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subjects. At 2 years, the best LDA measure needs only 67 MCI and 52 AD subjects, versus 119
MCI and 80 AD subjects for the stat-ROI method. Our surface-based measures are unbiased: they
give no artifactual additive atrophy over three time points. Our results suggest that statistical
weighting may boost efficiency of drug trials that use brain maps.
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Introduction
Biomarkers of Alzheimer’s disease based on brain imaging must offer relatively high power
to detect longitudinal changes in subjects scanned repeatedly over time (Cummings, 2010;
Ross et al., 2012; Wyman et al., accepted for publication). Even so, recruitment and
scanning are costly, and a drug trial may not be attempted at all, unless disease-slowing
effects can be detected in an achievable sample size, and in a reasonable amount of time.
Imaging measures from standard structural MRI show considerable promise. Their use
stems from the premise that longitudinal changes may be more precisely and reproducibly
measured with MRI than comparable changes in clinical, CSF, or proteomic assessments;
clearly, whether that is true depends on the measures used. Brain measures that are helpful
for diagnosis, such as PET scanning to assess brain amyloid or CSF measures of amyloid
and tau proteins, may not be stable for longitudinal trials that aim to slow disease
progression. As a result, there is interest in testing the reproducibility of biomarkers, as well
as methods to weight or combine them to make the most of all the available measures (Yuan
et al., 2012).

Recent studies have tested the reproducibility and accuracy of a variety of MRI-derived
measures of brain change. Several are highly correlated with clinical measures, and can
predict future decline on their own, or in combination with other relevant measures.
Although not the only important consideration, some analyses have assessed which MRI-
based measures show greatest effect sizes for measuring brain change over time, while
avoiding issues of bias and asymmetry that can complicate longitudinal image analysis (Fox
et al., 2011; Holland et al., 2011; Hua et al., 2011), and while avoiding removing scans from
the analysis that may lead to unfairly optimistic sample size estimates (Hua et al., 2012;
Wyman et al., accepted for publication). Promising MRI-based measures include the brain
boundary shift integral (Leung et al., 2012; Schott et al., 2010), the ventricular boundary
shift integral (Schott et al., 2010) and measures derived from anatomical segmentation
software such as Quarc or FreeSurfer, some of which have been recently modified to handle
longitudinal data more accurately (Fischl and Dale, 2000; Holland and Dale, 2011; Reuter et
al., 2012; Smith et al., 2002).

Although several approaches are possible, one type of power analysis, advocated by the
ADNI Biostatistics Core (Beckett, 2000), is to estimate the minimal sample size required to
detect, with 80% power, a 25% reduction in the mean annual change, using a two-sided test
and standard significance level α=0.05 for a hypothetical two-arm study (treatment versus

placebo). The estimate for the minimum sample size is computed from the formula below. 

denotes the annual change (average across the group) and  refers to the variance of the
annual rate of change.
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(1)

Here zα is the value of the standard normal distribution for which P [Z<zα]=α. The sample
size required to achieve 80% power is commonly denoted by n80. Typical n80s for
competitive methods are under 150 AD subjects and under 300 MCI subjects; the larger
numbers for MCI reflect the fact that brain changes tend to be slower in MCI than AD and
MCI is an etiologically more heterogeneous clinical category. For this reason, it is harder to
detect a modification of changes that are inherently smaller, so greater sample sizes are
needed to guarantee sufficient power to detect the slowing of disease. In addition, there is
some interest in prevention trials targeting cognitively normal subjects who are at risk for
AD by virtue of a family history or specific genetic profile (e.g., ApoE genotype); for these
and other cohorts, efficiency must be a high priority, and measures that can distinguish AD
from normal aging may be unable to track subtle changes efficiently in controls.

Many algorithms can detect localized or diffuse changes in the brain, creating detailed 3D
maps of changes (Avants et al., 2008; Leow et al., 2007; Shi et al., 2009), but the detail in
the maps they produce is often disregarded when making sample size estimates according to
Eq. (1), as the formula expects a single, univariate measure of change. In other words, it
requires a single number, or ‘numeric summary’ to represent all the relevant changes
occurring within the brain. To mitigate this problem, Hua et al. (2009) defined a “statistical
ROI” based on a small sample of AD subjects by thresholding the t-statistic of each feature
(voxel) and summing the relevant features over the ROI; this approach was initially
advocated in the FDG-PET literature to home in on regions that show greatest effects (Chen
et al., 2010). In spirit, the statistical ROI is a rudimentary supervised learning approach, as it
finds regions that show detectable effects in a training sample, and uses them to empower
the analysis of future samples; the samples used are non-overlapping and independent, to
avoid circularity. However, a simple threshold-based masking is known to potentially
eliminate useful features, as binarization loses a lot of the information present in continuous
weights (Duda et al., 2001). While many studies have used machine learning to predict the
progression of neurodegenerative diseases and differentiate diagnostic groups such as AD,
MCI, and controls (Kloppel et al., 2012; Kohannim et al., 2010; Vemuri et al., 2008), we
found no attempts in the literature that used learning to directly optimize power to detect
brain change. The closest work is perhaps that of Hobbs et al. (2010). In this paper, SVM
was used to separate subjects with Huntington’s disease from controls, and the resulting
score used to calculate sample size estimates. Our goal here was to generalize the very
simple binary feature weighting in the stat-ROI approach by directly maximizing the power
estimate in a training sample. A linear weighting that optimizes Eq. (1) directly, while using
multiple features at once, is exactly analogous to a one-class Linear Discriminant Analysis
(LDA), discriminating the disease class from an imaginary sample of zero mean whose
covariance is identical to the disease group. We propose two approaches to perform this
task: one optimizes Eq. (1) directly by Tikhonov regularization; the other is based on
principal components analysis (PCA).

A common criticism of the power analysis provided by Eq. (1) is that it does not take into
consideration normal aging in non-high risk healthy subjects (Holland et al., 2011). To
mitigate this, several researchers have proposed simply subtracting the mean value of the
change computed from controls, while using only the diseased subjects for a variance
estimate. This same issue can be directly addressed in the LDA framework. In this case, the
problem reduces to the usual 2-class LDA classification, except that the covariance structure
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is based on the diseased group only, and no assumption of homoscedasticity (equality of
variance) is made. This modification is particularly useful for revealing subtle disease-
specific atrophy in regions that also change, to some extent, with normal aging.

We apply our LDA approach to maps of surface-based “thickness” changes in the lateral
ventricles over intervals of 1 and 2 years after a baseline scan. The analyses are performed
on MRI scans from the ADNI-1 dataset. Using two follow-up time points, where available,
in addition to the baseline scan allows us to estimate the presence of any longitudinal bias,
or intransitivity, which has been a subject of controversy in recent ADNI studies (Hua et al.,
2011, 2012; Thompson and Holland, 2011). To register the ventricles and compute radial
thickness measures, we modify a recently proposed (Gutman et al., 2012) medial curve
algorithm for longitudinal registration. Our general approach is to compute a single
continuous curve skeleton and use the curve to induce feature functions on the surface.
Shape registration is then performed parametrically by minimizing the L2 difference
(summed squared difference) between corresponding feature functions of a pair of shapes.

We note that ventricular expansion is not specific to AD and the ventricles are often also
abnormally enlarged in vascular dementia, frontotemporal lobar degeneration, traumatic
brain injury, Huntington’s disease, and schizophrenia, among other conditions. Even so,
using detailed surface-based maps of the location of expansion—in conjunction with a
modified 2-class LDA—helps to reveal aspects of ventricular expansion associated with the
progression of Alzheimer’s disease.

Materials and methods
Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California, San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,
approximately 200 cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years and 200 people with early AD to be followed for
2 years. For up-to-date information, see www.adni-info.org.

Longitudinal brain MRI scans (1.5 T) and associated study data (age, sex, diagnosis,
genotype, and family history of Alzheimer’s disease) were downloaded from the ADNI
public database (http://www.loni.ucla.edu/ADNI/Data/) on July 1st 2012. The first phase of
ADNI, i.e., ADNI-1, was a five-year study launched in 2004 to develop longitudinal
outcome measures of Alzheimer’s progression using serial MRI, PET, biochemical changes
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in CSF, blood and urine, and cognitive and neuropsychological assessments acquired at
multiple sites similar to typical clinical trials.

All subjects underwent thorough clinical and cognitive assessment at the time of scan
acquisition. All AD patients met NINCDS/ADRDA criteria for probable AD (McKhann et
al., 1984). The ADNI protocol lists more detailed inclusion and exclusion criteria (Mueller
et al., 2005a, 2005b), available online http://www.nia.nih.gov/alzheimers/clinical-trials). The
study was conducted according to the Good Clinical Practice guidelines, the Declaration of
Helsinki and U.S. 21 CFR Part 50-Protection of Human Subjects, and Part 56-Institutional
Review Boards. Written informed consent was obtained from all participants before
performing experimental procedures, including cognitive testing.

MRI acquisition and image correction
All subjects were scanned with a standardized MRI protocol developed for ADNI (Jack et
al., 2008). Briefly, high-resolution structural brain MRI scans were acquired at 59 ADNI
sites using 1.5 Tesla MRI scanners (GE Healthcare, Philips Medical Systems, or Siemens).
Additional data was collected at 3-T, but is not used here as it was only collected on a
subsample that is too small for making comparative assessments of power. Using a sagittal
3D MP-RAGE scanning protocol, the typical acquisition parameters were repetition time
(TR) of 2400 ms, minimum full echo time (TE), inversion time (TI) of 1000 ms, flip angle
of 8°, 24 cm field of view, 192×192×166 acquisition matrix in the x-, y-, and z-dimensions,
yielding a voxel size of 1.25×1.25×1.2 mm3, later reconstructed to 1 mm isotropic voxels.
For every ADNI exam, the sagittal MP-RAGE sequence was acquired a second time,
immediately after the first using an identical protocol. The MP-RAGE was run twice to
improve the chance that at least one scan would be usable for analysis and for signal
averaging if desired.

The scan quality was evaluated by the ADNI MRI quality control (QC) center at the Mayo
Clinic to exclude failed scans due to motion, technical problems, significant clinical
abnormalities (e.g., hemispheric infarction), or changes in scanner vendor during the time-
series (e.g., from GE to Philips). Image corrections were applied using a standard processing
pipeline consisting of four steps: (1) correction of geometric distortion due to gradient non-
linearity (Jovicich et al., 2006), i.e. “gradwarp” (2) “B1-correction” for adjustment of image
intensity inhomogeneity due to B1 non-uniformity (Jack et al., 2008), (3) “N3” bias field
correction for reducing residual intensity inhomogeneity (Sled et al., 1998), and (4)
phantom-based geometrical scaling to remove scanner and session specific calibration errors
(Gunter et al., 2006).

The ADNI-1 dataset
For our experiments, we analyzed data from 683 ADNI subjects with baseline and 1 year
scans, and 542 subjects with baseline, 1 year and 2 year scans. The former group consisted
of 144 AD subjects (age at screening: 75.5±7.4, 67 females (F)/77 males (M)), 337 subjects
with Mild Cognitive Impairment (MCI) (74.9±7.2, 122 F/215 M), and 202 age-matched
healthy controls (NC) (76.0±5.1, 95 F/107 M). The 2-year group (i.e., people with scans at
baseline, and after a 1-year and 2-year interval) had 111 AD (75.7±7.3, 52 F/59 M), 253
MCI (74.9±7.1, 87 F/166 M), and 178 NC (76.2±5.2, 85 F/93 M) subjects. All raw scans,
images with different steps of corrections, and the standard ADNI-1 collections are available
to the general scientific community at http://adni.loni.ucla.edu. These data are summarized
in Table 1. We used exactly all ADNI subjects available to us (on Feb. 1, 2012) who had
both baseline and 12 month scans, and all subjects with 24 month scans (available July 1,
2012). The use of all subjects without data exclusion has been advocated by (Wyman et al.,
accepted for publication) and (Hua et al., 2012), because any scan exclusion can lead to
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power estimates that are unfairly optimistic, and many drug trials prohibit the exclusion of
any scans at all.

Surface extraction
Our surfaces were extracted from 9-parameter affine-registered, fully processed T1-
weighted anatomical scans. We used a modified version of Chou’s registration-based
segmentation (Chou et al., 2008), using inverse-consistent fluid registration with a mutual
information fidelity term (Leow et al., 2007). To avoid issues of bias and non-transitivity,
we segmented each of our subjects’ two or three scans separately. In this approach, a set of
hand-labeled “templates” are aligned to each scan, with multiple atlases being used to
greatly reduce error. There were an equal number of templates from each of the three
diagnostic groups, with an equal number of males and females in each. However, using only
AD or MCI templates instead is unlikely to have any measurable effect on the segmentation,
due to the fact that many templates are used.

Medial curve-based surface registration
In this study, we focus on mapping changes in the lateral ventricles, a fluid-filled space that
expands as brain atrophy progresses (Fig. 1). Clearly, other features could be used with our
multivariate approach, and it would be equally possible to apply the learning of
discriminative features from voxel-based maps of changes throughout the brain, as measured
by tensor-based morphometry, for example. The method is completely general, and it could
even be simultaneously applied to multiple types of features; for example, thickness
measures from anatomical surfaces (cortical and subcortical), maps of volumetric changes
throughout the brain, and any other biomarkers such as maps of brain amyloid or CSF
analytes. In that case the meaning of a 25% slowing the pattern of change would be less
intuitive, but it might identify biomarkers whose progression is slowed by a treatment. For
simplicity we present our analysis on measures of ventricular expansion, computed from
surface models of the ventricles in serial MRI. For completeness, we first explain some
mathematical concepts from differential geometry—such as medial curves and mappings—
that are useful when analyzing patterns of changes on these surface meshes.

Mathematical preliminaries
Anatomical surfaces in the brain, such as the ventricles, hippocampus, or caudate, have often
been analyzed using surface meshes and features derived from them, such as a medial curve,
or “skeleton”, that threads down the center of a 3D structure (Thompson et al., 2004). These
reference curves are often used to compute the “thickness” of the structure, by assessing the
distance from each boundary point to a central line or curve that runs through a structure.

The problem of finding the “medial curve” or “skeleton” of an orientable surface is not well-
defined, but a few properties are generally accepted as desirable (Cornea et al., 2005). Here
we focus on those properties that are particularly pertinent for registering and comparing
surfaces across multiple subjects:

1. Centered: we would like our curve to be “locally” in the middle of the shape. This
is important for accurately estimating local thickness on boundaries of shapes.

2. Onto, smooth mapping: There must exist a surjective, smooth mapping from the
surface to the curve. This is essential in order to use the medial curve for
registration.

3. Consistent geometry: The geometry of the curve should vary smoothly with smooth
variations of the shape.
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Exploiting the approximately tubular structure of many subcortical regions of interest (ROI),
we make the simplifying assumption that our skeleton is a single open curve with no
branches or loops. While this is a strong assumption, it greatly simplifies computation, and
allows us to focus on (P1) and (P3). In practice, single curve skeletons are robust, even for
representing branching shapes like the ventricles (Gutman et al., 2012). Focusing on (P1),
we say that a curve is the medial curve if it is smooth and every point on it is “locally in the
middle” of the shape. Formalizing this intuition for approximately tubular shapes, we have
the following expression for a medial cost function. Given a surface , the medial curve

, should be a global minimum of

(2)

where c(0), . Here,  is the weight defining the “localness” of point p
relative to c. Our weight function is defined as in Gutman et al. (2012). Adding a
smoothness term penalizing curvature κc, we have our final cost function:

(3)

While (P3) is not formally satisfied, it generally holds in practice due to the regularization

and the fact that  is piecewise smooth. We equip the shapes with two scalar
functions for registration based on the medial curve, the global orientation function (GOF) G
and medial thickness D:

(4)

(5)

An example of a medial curve and the corresponding GOF is shown in Fig. 2(A) and the
weighting function is illustrated in Fig. 2(B). To ensure (P2), we apply constrained
Laplacian smoothing to the GOF if there are any local extrema not at curve endpoints. This
step generally requires just a few iterations and is needed in only a small proportion of cases.
We modify the framework of Gutman et al. (2012) for longitudinal registration by adding
the longitudinal change term:

(6)

We first perform longitudinal registration following (Gutman et al., 2012) between each
follow-up ventricle model and the corresponding baseline model. Thus, the group-wise
registration step of Gutman et al. (2012) is done on only two shapes at a time. We then
register each pair of shapes to a corresponding target pair. Unlike Gutman et al. (2012), we
do not use group-wise registration during the cross-sectional step to avoid “peaking,” or
unfairly biasing our n80 estimate by using information from the testing sample during the
learning stage. Instead, we modify the GOF to minimize the L2 difference between the 1D
thickness and thickness change maps of the target surface and each new surface, expressed
as
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(7)

where * can correspond to D or ΔD. The 1D registration minimizes 

(8)

Here the functions f* are the feature functions of each subject’s surface, and g* are the
corresponding features of the target shape. The 1D displacement field r is restricted by r:
[0,1]→(−1, 1). The GOF is adjusted by Gadj=h−1ºG, h(t)=t–r(t). Surfaces are then registered
parametrically on the sphere by simultaneously minimizing the L2 difference between Gadj,
D, and ΔD of the new shape and the target shape. The target shape is excluded from LDA
training or testing. In this way, each time point and each subject are treated entirely
independently; adding new subjects or time points to the dataset does not affect previous
results.

LDA-based feature weighting
In designing an imaging biomarker, one generally seeks a balance between the intuitiveness
of the biomarker and its power to detect disease or disease progression. A natural choice for
ventricular shape-based features is radial expansion. It directly measures anatomical change
that correlates with the severity of AD and MCI (Carmichael et al., 2007; Chou et al., 2009;
Nestor et al., 2008; Ott et al., 2010; Schott et al., 2010; Thompson et al., 2004; Weiner,
2008). We use the thickness change defined in Eq. (7) as our local measure. Having made
this choice, we would now like to find an optimal linear weighting for each vertex on the
surface to maximize the effect size of our combined global measure of change. A linear
model may not have the intuitive clarity of a binary weighting (i.e., specifying or masking a
restricted region to measure), but its meaning is still sufficiently clear and can be easily
visualized. Thus we would like to minimize our sample size estimate (1) as a function of the
weights, w:

(9)

Here C = 32(z1−α/2+Zpower)2, xi is the thickness change for the ith subject, m is the mean

vector, the covariance matrix , and SB=mmT. Minimizing
Eq. (9) is to maximizing

(10)

which is a special case of the LDA cost function, with a maximum given by

(11)
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For our purposes, m represents the mean of the diseased group. We denote this by
m=mAD,MCI, where mAD,MCI stands for the mean expansion vector in the combined MCI
and AD group. We make no distinction between these two groups during LDA training.
Maximizing (10) directly is generally not stable when SW has a high condition number, as is
typically the case when the number of features greatly exceeds the number of examples. For
the same reason, even if a stable solution is found, it is unlikely to generalize to a new
sample. This is indeed observed for our ventricle data: direct unregularized solutions yield
1-year training n80s between 10 and 30 for MCI subjects, but applying the weighting to a
new, non-overlapping sample of MCI data can lead to n80s over 200, comparable to the stat-
ROI results. To mitigate this, we use two regularization approaches, one aimed at speed and
scalability, and the other at precision and generalizability.

To avoid dealing with dense covariance matrices directly, we apply Principal Components
Analysis to our training sample, storing the first k principal components (PCs) in the rows of
a matrix, P, and computing the corresponding k eigenvalues λj. This is a standard approach
when applying LDA to actual two-class problems, as it makes the mixed covariance matrix
nearly diagonal. In our case, the covariance in PCA space is exactly diagonal, which reduces
Eq. (11) to a direct computation:

(12)

This approach is very fast: one can compute the first k eigenvectors and eigenvalues of SW
without explicitly computing SW itself. An alternative to PCA is to incorporate spatial
smoothing into Eq. (11) as Tikhonov regularization. This approach is not as efficient as
PCA, but allows us to incorporate prior knowledge about the spatial distribution of vertex
weights into the solution. Thus it has better potential to generalize across samples. The
regularized solution then becomes

(13)

Here a is the smoothing weight, and L is the Tikhonov matrix. We use the matrix of surface
Laplacian weights between vertices of the average shape computed from healthy controls.
To avoid “peaking” with respect to the test n80s for control subjects, a different average
shape and Laplacian matrix are computed for each fold during cross-validation. To address
the potential lack of disease specificity of ventricular expansion and the power analysis of
Eq. (1), we also optimize Eq. (10) for NC-modified sample size estimates. In this case, the
mean estimate is modified to

(14)

where mNC is the mean expansion among controls.

The order of subjects in each diagnostic group is randomly changed to avoid any confounds
such as scanner type, as well as the age or sex of the subject. This step is needed mainly
because the standard ADNI subject order corresponds to scanning sites. Where the subjects
are scanned is known to correlate with reliability in many morphometric measures. This is
only done once before LDA training, with the same order and same subdivision of
diagnostic groups used for each method. To validate our data-driven weighting approaches,
we create two groups of equal size, with an equal number of MCI, AD and NC subjects in
each. Each of these folds is then used to optimize the relevant parameter, i.e., the number of
principal components k, the smoothing weight a, or the parametric p-value threshold for stat-
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ROI. The training fold is again divided into two groups with an equal number of AD and
MCI subjects in each, to tune the parameters. The best parameter is then used to train a
model on the whole fold, and the model is tested on the other fold. We note that for the PCA
approach, a different set of principal components is computed for each fold so that the
covariance information from the test set is not used. We further stress that group-wise
registration, even if it is blind to diagnosis and time, would constitute a circular analysis
here, as the covariance structure of the test set would again be used to inform the training
even if indirectly. In fact, the method proposed in Gutman et al. (2012) exploits covariance
quite directly. One alternative would be to group-wise register each fold separately. The
analysis would even remain objective if we then registered the test fold to a probabilistic
atlas created with the training fold, in which case each fold would have two independent
homologies, one for testing, and the other for training. However, we did not pursue such
complicated schemes, and simply registered all subjects to a single subject template.

A thoughtful reviewer suggested that the two novel aspects of the LDA model compared to
the stat-ROI—the continuous weighting, and the multivariate analysis compared to the
mass-univariate approach—should be tested separately. In practice, this suggests two
additional weightings: a continuous t-statistic weighting, which can be computed directly
with no parameter tuning; and a masked version of the LDA. In the latter case, two
parameters need to be tuned. In addition to the single parameter already embedded in the
model, we also need to find an optimal threshold. For computational speed, we choose to
threshold the PCA model. To devise a reasonable set of mask thresholds to test, we compute
the cumulative distribution functions (CDFs) of the vertex weights, and space our cutoff
values at regular intervals along the y-axis. In other words, each subsequent threshold adds a
surface region of a roughly constant area. Further, because the LDA maps are signed, we
consider both signed and unsigned masks. For the unsigned case, we use the prior
knowledge that ventricles are generally expected to expand, thus considering only positively
weighted areas, and weighing the vertices by 1 when the threshold is exceeded. For the
signed case, we also assign a value of –1 to vertices whose contraction rate exceeds a
threshold. In the latter case, different CDFs and threshold magnitudes are used for the
positive and negative regions.

To compute a meaningful anatomical summary from the vertex weights of each weighting
scheme, we normalized the weights by their 1-norm, which corresponds to averaging over
the ROI for the discrete methods, assuming equal area elements for all vertices. This
assumption, however, is only approximately true. These results do not exactly correspond to
mean sample sizes reported, since the mean n80 is defined as the average of the two folds’
sample size estimates.

Results
To verify that our measure of annual thickness change has good potential as a biomarker of
AD and MCI, we initially performed a group mean comparison of radial thickness change
over 1 year using a permutation test as in Thompson et al. (2004). This test relies on the
standard t statistic at each vertex, and computes a non-parametric null distribution for the
surface area that exceeds the given t-threshold. A threshold corresponding to α<0.05 was
used as in Thompson et al. (2004). We compared AD vs. NC groups, and MCI vs. NC. After
100000 random re-assignments of the group data, permutation-based p-values for the overall
pattern of group difference for AD vs. NC and MCI vs. NC were below the threshold for
each hemisphere, i.e., p<10−5. Localized p-maps of the results are shown in Fig. 3, and are
consistent with prior papers by Carmichael et al. (2007), Wang et al. (2011).

Gutman et al. Page 10

Neuroimage. Author manuscript; available in PMC 2014 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Below we compare the performance of our PCA-based vertex weighting, the Tikhonov-
regularized weighting, and the standard stat-ROI approach, as well as t-statistic weighting
and signed and unsigned LDA-ROI weightings. In testing each of these weighting methods,
we used nested 2-fold cross-validation. Only AD and MCI subjects were used in the training
stage. Further, we restricted our training sample to include only 1-year changes. Twenty-
four month data was only used for testing, applying 1-year models to the non-overlapping
subgroups of the 24-month data.

Our 1-year sample size estimates based on cross-validation were nearly identical for the
PCA and the Tikhonov approaches. During training of the PCA model, the optimal number
of principal components was chosen to be 28 and 47, for folds 1 and 2, respectively. Maps
of the weights averaged over the two folds are shown in Fig. 4A. The Tikhonov approach
resulted in predictably smoother weight maps, the mean of which is shown in Fig. 4B.
Twenty exponentially increasing values of smoothing weight a were tested, between a=10−2

and a=107. The two folds returned 103.5 and 104 as the optimal values.

The “stat-ROI” approach led to inferior results with n80s notably higher for all three
diagnostic groups, especially MCI. The optimal t-threshold was chosen to be p=10−6 in both
folds. The range of tested p-values contained every power of 10 between p=10−4 and
p=10−20, which corresponded to ROIs of every size, from patches covering nearly the entire
surface (>95%) to just a handful of mesh vertices. The average stat-ROI mask is shown in
Fig. 5C. As an additional control, we computed sample size estimates based on ventricular
volume change in both hemispheres. Volume-based estimates for the n80 were significantly
higher than the three surface-based measures. Table 2 shows a summary of all 1 year sample
size estimates. Fig. 6 illustrates the mean sample size estimates for all four measures at 1
year. Bootstrapped 95% confidence intervals (CIs) for each fold were computed as in Schott
et al. (2010). To estimate confidence intervals for the whole cohort in an unbiased way, we
normalized the linear weights of each fold by their standard deviation. Although the scale of
the weighting vector has no bearing on Eq. (1) within each fold, the relative scales of the
two vectors can skew the CIs significantly when considered together. Thus, a similar scaling
is necessary when computing overall CIs. After this step, the overall CIs were computed the
same way as for each fold. We also computed bootstrapped mean n80 comparisons between
the different methods for each fold, and for the overall sample. While the two LDA
approaches were not significantly different, both led to significantly lower n80s for an MCI
clinical trial. The PCA method showed significantly lower estimates for NC subjects, if not
corrected for multiple comparisons. P-values for n80 comparisons across the first three
methods are summarized in Table 3a.

The sample sizes based on t-statistic weighting were very similar to stat-ROI results, with no
significant difference, though stat-ROI n80s were generally slightly lower. These weights
are visualized in Fig. 4C. The LDA-ROI sample sizes were greater than the continuous
weighting, though the difference only reached significance for the unsigned case. For the
signed case, 81 and 71 PCs were selected during parameter tuning for the two folds, and the
threshold corresponded to 80% of the vertices. For the unsigned case, only 15 and 7 PCs
were used, with the threshold set at 90% of the vertices. Comparisons of continuous vs.
discrete weightings are presented in Table 3b. The masks resulting from the three discrete
methods are visualized in Fig. 5. P-values for n80 comparisons between the discrete and the
corresponding continuous weightings are summarized in Table 3b.

Finally, the control-augmented sample sizes resulting from the 2-class LDA model resulted
in noticeably different maps compared to the 1-class models. We again used the PCA
approach, with 32 and 54 principal components used in the two folds. The pattern of the 2-
class LDA model was characteristic of AD: significantly more weight was given to the
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inferior horns bordering the hippocampus, and more weighting was also given to the middle
of the occipital horns, characteristic of white matter degeneration. These results are
displayed in Fig. 4D. For comparison purposes, we show the control-adjusted sample size
estimates for our weightings in Table 4b and Fig. 7B, and also those reported in Holland et
al. (2011), in Fig. 9B.

All methods had good agreement between the two folds’ models. The sample sizes in each
fold were similar, and the weight patterns were also in good agreement. We used ordinary
linear regression for each weighting scheme’s pair of linear models. The null hypothesis that
the regression model does not fit the data (F-test) returned p<10−20 for all weighting
schemes.

Tables 4a, 4b and 5 show corresponding results for 24-month sample sizes. Here, the general
trend is similar to 1-year, though the sample size estimates in controls are closer to estimates
for MCI and AD. Fig. 7 illustrates this effect graphically.

To assess whether there is any evidence of longitudinal bias in our weighted measures, we
applied our 1 year models to healthy controls at 12 and 24 months. Using a method similar
to Hua et al. (2011), we used the y-intercept of the linear regression as a measure of bias
(bearing in mind the caveats noted that there may be some biological acceleration or
deceleration that could appear to be a bias). We again used bootstrapping to estimate the
intercept and linear fit confidence intervals (DiCicio and Efron, 1996). Fig. 8 shows the
regression plots for all surface models over the two follow-up time points. Confidence
intervals for the linear fits are shown in dotted green lines. The units of change along the y-
axis represent the weighted ventricular expansion, normalized by the 1-norm of the weight
vectors. The 95% confidence interval for the PCA method was (−0.0218, 0.036) mm, with a
mean expansion of 0.111 mm at 1 year and 0.214 mm at 2 years. For the Tikhonov model,
the 95% CI was (−0.0126, 0.0242), with mean change at 1 and 2 years of 0.0704 mm and
0.1351 mm, respectively. The stat-ROI summary resulted in a 95% CI of (−0.0411, 0.0645)
mm, mean expansion 0.158 mm at 1 year, and 0.306 mm at two years. The bias test results
are summarized in Table 6. Group averages for atrophy rates, with each model, are reported
in Tables 7a and 7b.

Discussion
Here we introduced and tested an approach to increase the efficiency of clinical trials in
Alzheimer’s disease and MCI, based on multiple neuroimaging features, with a
straightforward application of Linear Discriminant Analysis (LDA). We applied our
measure of brain change to a surface-based measure of atrophy in the lateral ventricles.
Despite the simplicity of our approach, the resulting sample size estimates are significantly
better than the stat-ROI approach, which has been the standard feature weighting method to
date. The linear feature weighting also produces an intuitive, univariate measure of change
—a single number summary that can be correlated to other relevant variables and outcome
measures. The linear weights can be easily visualized, adding insight into the pattern and 3D
profile of disease progression. Our longitudinal ventricular morphometry showed high
sensitivity to local differences in shape change due to AD. Local maps of shape change were
consistent with previous studies.

We applied our LDA approach to local ventricular shape change features, with promising
results. We used two alternative methods for solving the LDA optimization problem. The
first approach, based on principal components analysis, is very fast and scalable to larger
feature sets, such as dense Jacobian determinant maps in volumetric Tensor Based
Morphometry (TBM). The other optimization method exploits the relatively sparse nature of
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our surface data by adding Tikhonov regularization in the form of surface-based scalar
Laplacian smoothing.

To distinguish between the two novel aspects of the LDA approach with respect to the stat-
ROI—multivariate analysis and continuous weighting—we compared three additional
weighting schemes. The first is simply the continuous version of the mass-univariate
approach used in the stat-ROI, the t-statistic weighting. In cross-validation, this weighting
performed slightly worse than the stat-ROI, but the difference did not reach significance.
The second and third weighting schemes were designed to be discrete analogues of the
PCA-LDA model. These performed worse than the continuous PCA model, with the
difference between the unsigned LDA-ROI and the PCA models reaching significance for
MCI and NC subjects. However, the signed LDA-ROI model performed notably better than
the stat-ROI. These results together suggest that both the continuous and the multivariate
aspects of the LDA models contribute to sample size reduction, but the multivariate aspect
may play a larger role.

Shape analysis
We have modified a shape registration approach for longitudinal shape analysis in the lateral
ventricles. A variety of “medial-curve type” analysis methods for subcortical shapes have
been developed over the years. A discrete approach called M-reps was popularized by Pizer
et al. (2005) and extended to the continuous setting by Yushkevich et al. (2005). M-reps
consist of a discrete web of “atoms,” each of which describes the position, width and local
directions to the boundary, and an object angle between corresponding boundary points. The
approach leads to an extremely compact representation of the shape model. However, the
method requires a specific m-rep model for each type of shape. For a given brain region, this
model may need to be modified before it can be applied to a different dataset, if the
geometry of the new set of shapes is slightly different, e.g. after being segmented using a
different protocol. This drawback is partially overcome when the medial core is continuous.

“CM-reps” are an elegant extension of M-reps to the 2-D continuous medial core. CM-reps
offer a way to derive boundaries from skeletons, by solving a Poisson-type partial
differential equation with a nonlinear boundary condition (Yushkevich et al., 2005). The
resulting 2D medial “sheet” continuously parameterizes the shape-enclosed volumetric
region, as well as the surface. Thus in spirit it is very similar to our approach: a particular
topology of the continuous medial model is assumed, and the model is deformed to fit each
shape. However in certain practical applications, the 2D aspect of the cm-reps model can
become a liability, leading to inconsistent parameterization for a family of similar shapes.
One such case is the lateral ventricle, where the 2D medial sheet can twist unpredictably
around the junction of the superior and occipital horns. Instead, our general approach is to
compute a single 1D continuous curve skeleton and use the curve to induce feature functions
on the surface. Shape registration is then performed parametrically by minimizing the L2

difference between corresponding feature functions of a pair of shapes. Wang et al. (2011)
used radial distance in conjunction with a conformal parameterization and surface-based
TBM as an improved measure of ventricular expansion. In this case, a single-curve skeleton
was computed based on the conformal parameterization for each ventricular horn. Curve-
skeletons of fixed topology have also been used before in medical imaging with distance
fields (DFs) (Golland et al., 1999). Our approach avoids the use of DFs, and defines a cost
function relating the skeleton directly to the surface, eliminating the imprecision associated
with the additional discretization due to DFs. Further, relying only on the discretization of
the surface allows us to greatly speed up computation, making analysis of many hundreds of
3D shapes with the continuous medial axis achievable in little time without using large
computing clusters.
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Machine learning in shape analysis and Alzheimer’s disease
PCA-type approaches have been used in prior shape analyses. A regularized components
analysis approach called LoCA (Alcantara et al., 2009) is similar to sparse PCA (Zou et al.,
2006). The idea, similar to PCA, is to generate an orthogonal basis for shape space, while
adding a penalty term. However, instead of penalizing the number of non-zero weights in
each basis vector, as is done in sparse PCA, LoCA instead forces all the non-zero
components to be spatially clustered on a surface, which gives each component a clearer
anatomical meaning. However, both of these methods come at a much higher computational
cost than ordinary PCA: they are iterative, while PCA only relies on eigen-decomposition,
making it feasible for much larger feature sets. LoCA has been applied to shape analysis in
AD, including ADNI hippocampal data (Carmichael et al., 2012), finding specific
component associations with AD and other biomarkers. Here, the measure used was very
similar to ours, the radial distance. Only baseline data were used in assessing morphometric
differences, while our current study is longitudinal.

Sparse basis decomposition has also been used as a preprocessing step for training an AD
classifier, for example by applying Independent Component Analysis (ICA) to gray matter
density maps before using machine learning methods, such as Support Vector Machines
(SVM), for classification (Yang et al., 2010). Many machine learning approaches have been
applied to image-based diagnosis or classification of AD and MCI. Davatzikos and
colleagues applied SVM to RAVENS maps (Fan et al., 2008), an approach similar to
modified VBM (Good et al., 2002) which assigns relative tissue composition to every voxel
after a high-dimensional warp. A similar approach was used by Vemuri et al. (2008), using
tissue probability maps (TPMs)—essentially the same VBM measures that are constructed
using the SPM package. Kloppel et al. (2008) further showed that such a model can be
stable across different datasets. In general, classification algorithms can achieve AD-NC
cross-validation accuracy in the mid-nineties (~95%) within the same dataset, although
performance inevitably degrades when applied to new datasets, especially if the cohort
demographics or scanning protocols are different.

Cuingnet et al. (2010) developed a Laplacian-regularized SVM approach for classifying AD
and NC subjects, which is very similar in spirit to our Tikhonov-regularized LDA. They
show that using the Laplacian regularizer improves classification rates for AD vs. NC
subjects. SVM has also been used, in our prior work, to separate AD and NC subjects based
on hippocampal shape invariants and spherical harmonics (Gutman et al., 2009). Another
recent surface-based classification effort by Cho et al. (2012) uses an approach very similar
to our PCA method, where surface atlas-registered cortical thickness data is smoothed with a
low-pass filter of the Laplace-Beltrami operator, computed on the atlas shape. Following
this procedure, PCA is performed on the smoothed surface thickness data and LDA is
performed on a subset of the PCA coefficients to train a linear classifier. The resulting
classification accuracy is very competitive. Another surface-based classifier (Gerardin et al.,
2009) uses the SPHARM-PDM approach to classify AD and NC subjects based on
hippocampal shape. SPHARM-PDM (Styner et al., 2005) computes a small number of
spherical harmonic coefficients based on an area-preserving surface map, and normalizes the
spherical correspondence by aligning the first-order ellipsoid with the poles. The result is a
rudimentary surface registration and a spectral decomposition of the shape. Gerardin et al.
reported competitive classification rates compared to whole-brain approaches. Shen et al.
(2010) recently used a Bayesian feature selection approach and classification on cortical
thickness data and showed that AD-NC and MCI-NC classification accuracy remains
competitive with SVM. Finally, to combine multiple modalities for classification, Zhang et
al. (2011) developed a multiple kernel SVM classifier to further improve diagnostic AD and
MCI classification.
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It is important to stress that while many studies have used machine learning to derive a
single measure of “AD-like” morphometry for discriminating AD and MCI subjects from
the healthy group, no study we are aware of has used machine learning to maximize the
power of absolute atrophy rates in AD. We have attempted this by using a straightforward
application of LDA, using either PCA or Tikhonov regularization. The Tikhonov approach
was intended to improve generalization relative to PCA, but surprisingly, there were
essentially no major differences in test sample size estimates for AD and MCI subjects
between the two methods. Only one subgroup at 24 months approached a trend level for a
difference in efficiency (sample size difference) between the Tikhonov and PCA model. The
Tikhonov method was slightly better for reducing sample size estimates in MCI,
generalizing better - as expected. A potential cause of this may be an insufficiently thorough
optimal parameter search for the Tikhonov approach, as the search must remain fairly coarse
due to computational constraints. On the other hand, it is possible that the covariance
structure of the training samples captures the spatial priors sufficiently well, and an explicit
prior does not significantly improve generalizability.

Outside of Alzheimer’s literature we found one approach for explicitly minimizing sample
size estimates (Qazi et al., 2010), and another that uses SVM for classification of
Huntington’s disease patients versus controls, with reduced sample sizes as a by-product
(Hobbs et al., 2010). The first paper is methodologically closest in spirit to this work: a
fidelity term is explicitly defined to be the control-adjusted sample size estimate. A number
of non-linear constraints are then added: the total variation norm (TV1-norm), sparsity and
non-negativity. While the first two have analogues that can be linearly optimized as we do
here (TV2 and L2 norm), the third constraint forces the authors to use non-linear conjugate
gradient (CG), which leads to far slower convergence than the linear CG we use. More
importantly, due to the differences in the nature of their data—knee cartilage CT images—
and ours, the sparsity and non-negativity constraints are perhaps not appropriate for brain
imaging. We expect the effect over soft tissue to be diffuse without many discontinuities,
and non-negativity is generally not appropriate in brain MR either. Admittedly, though, as
we have focused only on the ventricles, non-negativity would probably be appropriate here,
though it would lead to slower convergence. The second paper (Hobbs et al., 2010), which
we mention in the introduction, simply uses leave-one-out linear SVM weighting of fluid
registration-based TBM maps to derive an atrophy measure. No spatial regularization, or
sample size-specific modification to the learning approach is used. In both of these cases the
measure used is based on the difference between the mean of controls and the diseased
group, which is not the main goal of the present work. Though we have used the NC-
adjusted measure here as well to show the potential to reveal AD-specific ventricular change
patterns, the main goal was to optimize detection of absolute change.

Other ventricular measures
Several studies have used a ventricular measure alone, as a predictor of cognitive decline.
Ott et al. (2010) showed that ventricular volume is associated with CSF Aβ. Carmichael et
al. (2007) compared ventricular volume and ventricle–brain ratio (VBR) across MCI
converters and non-converters with significantly increased volume, and VBR at baseline
among converters. Nestor et al. (2008) used a semi-automated highly precise ventricular
segmentation to estimate differences in rates of volumetric change. Rates of volumetric
increase in the ventricles were significantly greater in MCI and AD subjects compared to
NC, which is in line with expectations about the rates of atrophy in each group. Chou et al.
(2009) performed a cross-sectional ventricular study on the baseline ADNI dataset, using a
surface-based model. Surfaces were registered—in a similar way to Thompson et al. (2004)
—by separating each horn and computing three separate medial axes. The radial distance
measure was shown to be significantly different between NC and AD, and NC and MCI
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subjects. Several other cognitive measures and CSF biomarkers were shown to correlate
significantly with the local ventricular surface expansion, in a direction expected from the
advancing pathology and the intensification of the disease. Ferrarini et al. (2006) showed
differences in local ventricular surface morphometry between AD and NC subjects using
permutations testing and a novel algorithm—known as “GAMEs”—for surface meshing and
matching.

Power estimates of other measures in AD
Our ventricular change measures outperformed other common ventricular measures as an
AD biomarker with respect to the sample size requirements, assuming of course that the
reference data are comparable. Schott et al. (2010) reported 1-year n80s for the “Ventricular
Boundary Shift Integral” (VBSI) of 118 (92, 157) for AD and 234 (191,295) for MCI at 1
year. Holland et al. (2011) reported a Quarc ventricle measure of 92 (69, 135) for AD and
183 (146, 241) for MCI for a 2-year trial. FreeSurfer ventricular measures give similar 2-
year estimates of 90 (68,128) for AD and 164 (133, 211) for MCI. Our approach performs
comparably well or better than many other imaging measures, in particular those using the
entire cortex. An FSL tool, known as SIENA (Smith et al., 2002; Cover et al., 2011),
achieved a 1-year point estimate for sample size of 132 for AD and 278 for MCI. Quarc
achieved 2-year whole brain estimates of 84 (63, 123) for AD and 149 (121, 193) for MCI.
FreeSurfer is reported (Holland et al., 2011) to achieve 2-year whole brain estimates of 252
(175, 408) for AD and 384 (294, 531) for MCI. Schott reported that BBSI, a whole brain
gray matter atrophy measure (Schott et al., 2010), required 1-year samples of 81 (64, 109)
for AD and 149 (122, 188) for MCI. Hua et al. (2012) used improved Tensor Based
Morphometry (TBM) with the stat-ROI voxel weighting to achieve 1-year sample sizes of
58 (45,81) for AD and 124 (98,160) for MCI. These comparisons are summarized in Figs. 9
and 10. Though all sample size estimates mentioned here are based on the same ADNI-1
dataset, different studies were done on ADNI subsamples of different size. To shed some
light on this, we give the number of subjects used for each study in Table 8. Comparison
between our study and others is more meaningful where there are fewer exclusions. We note
that while the Quarc and Freesurfer results from Holland et al. (2011) are for a 2-year study,
and using a slightly different power calculation, in fact even subjects who only had scans up
to 1 year were considered. The variance and disease effect in these calculations were based
on a mixed effect model using all available time points for each subject. However, there are
still roughly 10% fewer subjects used for Quarc and 7% fewer for Freesurfer compared to
the full ADNI dataset.

Algorithmic bias
Importantly, we showed that our surface-based measures are longitudinally unbiased
according to the intercept CI test (Yushkevich et al., 2010), alleviating common concerns
about overly optimistic sample size estimates due to, for example, additive algorithmic bias.
The fact that the baseline and follow-up scans were processed identically, and
independently, avoids several sources of subtle bias in longitudinal image processing that
can arise from not handling the images in a uniform way (Thompson and Holland, 2011).
Some issues have been raised regarding the validity of the intercept CI test as a test for bias
in estimating rates of change. The CI test assumes that the true morpho-metric change from
baseline increases in magnitude linearly over time in healthy controls. Relying on this
assumption, the test examines whether the intercept of the linear model, fitted through
measures of change at successive time intervals in controls, is zero. If this is not the case, the
measure of change is said to have additive bias. There are two common criticisms of this
test. First, the linearity assumption may not always be valid, i.e., true biological changes
may be nonlinear. In this case, a truly unbiased algorithm could fail the test, while giving
accurate results. For example, the loss of tissue may be proportional to the amount of tissue
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left, so the change in volume as measured by TBM, or medial distance to a ventricular
boundary relative to baseline might decay or expand exponentially. Alternatively, if loss of
tissue volume is linear in time, radial distance measures might be expected to change in
proportion to the cube-root of time, or to vary according to some empirical power law
relating the distance to volumetric measures, depending on which directional changes
contribute most to the overall change (Zhang and Sejnowski, 2000; Brun et al., 2009). This
may partially explain the slight additive “bias” that is detectable in AD and MCI subjects
(though not in controls). In disease, the power law describing changes as a function of time
may be different compared to controls due to disease effects. As a result, only control
subjects should be used when using the linear fit CI test, but even in that case, it is not a
perfect test, in that an accurate algorithm could fail the test.

The second common criticism of the CI bias test is that non-additive, atrophy-dependent
type of bias may not be detected with the test. In other words, if there exists a complex
transfer function between the true change and measured change, a simple linear regression
through several time points may not reveal this as a non-zero y-intercept. However, care
must be taken when such a transfer function is discovered in an algorithm. It is not simply
enough to show the existence of such a function to call an algorithm “biased”; one must also
show that the function systematically scales the square of the mean and the variance of the
whole sample differently over any number of time points. To address this, we will break the
possible transfer functions into four somewhat-overlapping categories, ordered by
plausibility, and discuss each. We assume that in all cases an observed transfer function for
the mean change is similar in form to the true transfer function for individual subjects.

1. No additive bias and a transfer function whose second derivative has the
same sign everywhere—This is perhaps the most likely scenario. For example,
measures derived from non-linear deformation fields such as TBM are known to undergo
this kind of bias when inverse-consistency is not enforced; page 5 of Tagare et al. (2009)
gives a clear explanation for this. In this case, assuming a linear true change, the measured
change will follow a non-decreasing (or non-increasing) curve with the same convexity
everywhere. Since we assume a zero y-intercept for the curve, a linear fit through two or
more time points will inevitably show a non-zero intercept, given enough true change. Thus,
the CI intercept test can detect this kind of bias even with just two time points in addition to
baseline. Most “known” cases of algorithmic bias that the CI test has so far revealed in
literature (Yushkevich et al., 2010; Holland et al., 2011) may well fall in this category.

2. An additive bias and a transfer function whose second derivative has the
same sign everywhere—In this case, the additive bias may indeed cancel out the effect
of the atrophy-dependent bias, if the second derivative and the additive bias have the same
sign. However, this would require quite a special set of circumstances: the sampled time-
points and the additive portion of the bias would have to be just right for the linear fit to
have a zero y-intercept. With sufficiently many time points, this situation becomes virtually
impossible. However, as we have only used three time points, we must admit that this is a
possibility, however unlikely, in our study.

3. A strictly linear transfer function with or without additive bias—This scenario
is the clearest example of when the CI test would fail. In this case, the measured mean
change would be a constant multiple of true mean change. However, it is unclear whether
this kind of transfer function can be properly called a “bias.” If such a transfer function had
similar form for individual subjects as their sample mean, the sample size estimates would
remain unchanged, as the variance would scale in the same way as the square of the mean.
On the other hand, it is somewhat difficult to imagine a linear bias that scales the variance
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and the square of the mean differently for many time points. This would violate our
assumption.

4. “Other:” A transfer function with one or more inflection points, with or
without additive bias—Though experience with image processing algorithms shows that
this scenario is highly improbable, in the interest of completeness we note that this kind of
bias can indeed be missed by the CI test, while unfairly inflating power estimates. This is
also the only scenario in which our assumption regarding individual bias and bias of the
mean will be invalid.

Having gone through this exercise, we hope to have shown that while certain kinds of non-
additive bias can potentially be left undetected by the intercept CI test, such a bias is either
improbable or does not lead to unfair sample size estimation. Far more likely is the
breakdown in the linearity assumption of the CI test, which renders the test inappropriate.
Using a subset of the data in which the change is small enough to be at least approximately
linear in time, i.e. the control subjects, alleviates the latter issue.

We deliberately chose to use only 12-month data in training our optimized atrophy models.
This choice was motivated by practical concerns: we wanted to show that using LDA for
optimizing power generalizes sufficiently well to later time points without requiring real
drug trials to recompute the atrophy measure for all scans with each new batch of data. This
latter situation could be considered a “moving target.” While it may be argued that a better,
more parsimonious model could be trained on a sample that includes all available time
points, perhaps even incorporating the time variable explicitly, such an approach potentially
hides any methodological bias that is inherent in a particular algorithm. Further, a real
clinical trial would likely require an ability to apply the same measure to new follow-up
scans without requiring one to recompute the measure for all time points every time a new
batch of follow-up scans becomes available. In this way, we avoid the moving target
problem that bedevils methods requiring scans from all time points. Further, because such
methods rely on data-driven techniques to reduce longitudinal bias, for example by
computing a per-subject brain atlas based on all available time points, the perceived absence
of bias does not indicate that the imaging algorithms themselves are unbiased. This may be
called a kind of “peaking” or circularity, as the data used to assess the bias is also used to
compute the atrophy measure. However, we do not rely on any data-driven techniques which
explicitly force the results to be transitive over time for all available scans. In this sense, the
absence of bias in our measures is more indicative of algorithmic objectivity with respect to
the amount and direction of morphometric change.

Total and relative atrophy
There has been some recent debate regarding the need to subtract the mean of the healthy
controls when estimating sample sizes for a drug trial. Some ADNI collaborators seem to
have rejected this idea (Hua et al., 2012; Wyman et al., accepted for publication), in part
because real drug trials do not tend to enroll controls, and even if they did, many controls
already harbor incipient Alzheimer pathology or some degree of vascular pathology that
may also be resisted by treatment. However, the idea is not completely without merit, since
all meaningful trials must compare a treatment against another (placebo or established)
treatment group. Further, any additive algorithmic bias could be excluded by subtracting the
mean rate of controls. In this paper, we addressed this issue by computing an additional
linear ventricular expansion model, specific to AD and MCI progression. We did this by
directly applying a 2-class, as opposed to 1-class, LDA with the covariance defined strictly
by the diseased group, as required by the current practice of NC-adjusted sample size
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estimates. The resulting power estimates for NC-adjusted atrophy outperform all previous
ventricular measures.

Future work
Future work will include combination of multiple biomarkers, including other imaging
biomarkers, such as TBM or even non-imaging biomarkers (such as CSF or proteomic
measures), into the framework. For example, there is no mathematical reason why only the
ventricular measures should be included, as any pertinent structural or functional measure
could be incorporated. In the former case, only the PCA-based approach would be feasible
due to the high computational cost. It is also important to validate the LDA-weighted
measures as well as stat-ROI measures across different data sets. Further, we would like to
extend the use of supervised learning to further reduce our sample size estimates. For
example, in the PCA experiment, we simply used all principal components—up to a cutoff
value. Although the resulting patterns lead to low sample sizes, their spatial distribution
contained high-frequency components that may not have anatomical meaning. A more
advanced approach would be to perform a greedy boosting-type search over the principal
components, with the goal of making the pattern more generalizable and more congruent
across the folds. Such a blended LDA-boost approach with built-in cross validation for
better fold agreement was proposed in Lu et al. (2003). As our linear weighting is likely to
contain a combination of disease effect and systematic registration artifact, a boosting
approach over the principal components could potentially isolate and discount any PCs
containing the artifactual portion of the variance. Further improvements in sample size
estimates could potentially be achieved by modeling out confounding factors such as age
and sex, as is done in Schott et al. (2010), and by enrichment techniques that take into
account ApoE genotype or family history of AD.

There are two other caveats about comparing n80s that have been raised before. First, basing
a measure of brain change on a certain region or parameter of the brain may overlook
valuable disease-modifying effects that affect other regions or measures. This is an
inevitable consequence when choosing any surrogate outcome measure. Second, the slowing
of a change measure by 25% may have different value to the patient, depending on whether
the measure is volumetric loss, amyloid clearance, or decline in cognition. As a result, the
n80 is a guide to biomarker utility that must be weighed against other relevant criteria, in
much the same way as we advocated the weighting of multiple features within an image
here, rather than relying on any one marker of disease progression.
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Fig. 1.
Lateral ventricles in the human brain.
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Fig. 2.
The medial curve of a lateral ventricle surface in one subject from the ADNI cohort. (A)
Mesh vertices are colorized by the corresponding Global Orientation Function. (B) Surface
weight map from Eq. (2) corresponding to the curve point marked in red. The weight is
maximal at the cross-section of the surface with the normal plane of the curve, and decays
quickly away from the normal plane.
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Fig. 3.
P-maps show the group differences in annual atrophy rates between healthy controls and
(left) AD, and (right) MCI subjects. The progressive expansion from normal aging to MCI/
AD is in line with prior reports. Loss of significance near the ends of the medial curve are
likely due to the nature of the measurement rather than true anatomical change.
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Fig. 4.
Continuous weight maps, scaled by standard deviation of the weights. (A) PCA-LDA; (B)
Tikhonov-LDA; (C) t-statistic weighting; (D) 2-class PCA-LDA. The weights in (A) and (B)
are quite different from the stat-ROI, which indicates that areas of importance in detecting
atrophy do not always correspond to the area with highest t-statistic. Compared to (A), (B)
shows a similar, but smoother pattern. Most of the area is positively weighted - as expected -
though some ventricular contraction is used for a scalar measure as well. This may be
partially explained by registration artifact and imprecision in the medial axis, as there is no
obvious biological explanation. (D) shows a more disease-specific atrophy pattern.
Significantly more weight is given to the inferior horns bordering the hippocampus, and
more weighting is also given to the middle of the occipital horns, characteristic of white
matter degeneration. Unlike (A)–(C), this map is directly comparable with Fig. 3. The
pattern is again different compared to a mass-univariate weighting.
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Fig. 5.
Discrete weight maps. (A) Unsigned LDA-ROI; (B) Signed LDA-ROI; (C) Stat-ROI.
Positive ROI is colored in red, negative in blue.

Gutman et al. Page 28

Neuroimage. Author manuscript; available in PMC 2014 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Sample Size Estimates at 1 year. The surface-based estimates are based on nested cross-
validation, and averaging the estimates in each non-overlapping fold. PCA and Tikhonov
methods require nearly identical samples, while Stat-ROI requires a significantly larger
sample of MCI subjects. All surface-based methods need fewer subjects than ventricular
volume.
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Fig. 7.
(A) Sample Size Estimates at 2 years. The pattern is similar to estimates at 1 year. The
relative difference between stat-ROI and LDA-based methods is greater. (B) NC-adjusted
Sample Size Estimates at 2 years. The 2-class model outperforms all other measures.
Volume is second best for MCI and on par with the best 1-class measures for AD.
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Fig. 8.
Regression plots for surface-based ventricular expansion measures in controls. 95%
confidence belts for the regression models are shown with dotted green lines. All surface
models are longitudinally unbiased, since the zero intercept is contained in the 95%
confidence interval on the intercept, for each of the methods. The 2-class model is trending
on additive bias; however, in this model the mean of controls is subtracted for power
estimates.
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Fig. 9.
(A) Sample size estimates for different ventricular biomarkers. The PCA method is
designated here as “Medial Vent-LDA.” The Quarc and Freesurfer measures are for a two-
year trial. (B) NC-adjusted Sample size estimates for different ventricular biomarkers. The
2-class PCA method is designated here as “Medial Vent-LDA.” All other results are taken
from Holland et al. (2011).
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Fig. 10.
Sample size estimates for different whole biomarkers compared to our ventricular measure.
The PCA method applied to ventricular surfaces is designated here as “Medial Vent-LDA.”
The Quarc and Freesurfer measures are for a 2-year trial. SIENA estimates are computed
from the means and variances reported in Cover et al. (2011).
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Table 1

Available scans for ADNI-1 on February 1, 2012, for 12 months and July 1, 2012, for 24 months. Total
number of scans used: N=2065.

Screening 12Mo 24Mo

AD 200 144 111

MCI 408 337 253

Normal 232 202 178

Total 840 683 542
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Table 2

Sample size estimates for clinical trials, using ventricular change over 12 months as an outcome measure.
Depending on how we weight the features on the ventricular surfaces, the sample size estimates can be
reduced, and the power of the study increased. The two LDA-based methods (top two rows) show lower
sample size estimates (i.e., greater effect sizes) than the standard “statistical ROI” approach, which uses a
binary mask to select a region of interest. The “t-stat” row shows results when weighting the vertex expansion
rates with the t-statistic. “PCA sign.” and “PCA uns.” show results when thresholding PCA-LDA based
weight maps, with “sign.” meaning that negatively weighted areas were considered and assigned a weight of
−1 when below the threshold. “Uns.” means “unsigned,” i.e. only positively weighted vertices were
considered, and weighted with 1 if exceeding the threshold. All surface-based approaches (top six rows)
outperform measures of change based on ventricular volume. The “mean” columns display n80s and CIs of
the two folds’ estimates averaged. Bold entries represent the lowest point estimates for sample size
requirements among the listed methods.

MCI AD NC Mean MCI Mean AD Mean NC

PCA 111/96
(85,150)/(75,127)

65/86
(46,92)/(64,128)

134/192
(106,177)/(150,260)

104
(94,139)

75
(64,102)

163
(114,190)

Tik. 116/105
(92,154)/(81,146)

71/95
(49,100)/(65,155)

155/186
(121,205)/(156,247)

110
(92,135)

83
(63,110)

170
(119,196)

Stat-ROI 184/145
(143,256)/(108,215)

95/94
(64,143)/(67,143)

207/201
(159,279)/(155,271)

165
(134,209)

94
(72,125)

204
(156,273)

t-stat 205/151
(154,289)/(112,247)

91/99
(63,143)/(67,147)

218/212
(166,298)/(162,288)

178
(143,232)

95
(72,128)

215
(175,264)

PCA
 sign.

134/111
(104,184)/(83,157)

85/81
(61,124)/(55,128)

170/187
(128,242)/(144,251)

123
(100,154)

83
(63,111)

178
(146,222)

PCA
 uns.

226/161
(166,332)/(120,263)

95/100
(65,146)/(68,150)

242/233
(182,339)/(176,323)

193
(155,261)

98
(74,130)

237
(192,296)

Vol. – – – 266
(216,355)

145
(108,199)

352
(262,533)
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Table 3a

P-values estimating the evidence that the true 12-month n80 (sample size requirement) of the first method is
equal to or greater than that of the second method. Null distributions were created by bootstrapping 100,000
samples with replacement. Note that depending on how rigorous one is about hypothesis testing, the true p-
values may need a Bonferroni correction by a factor of 3, if one accepts a separate correction for each subset
of the data, or 9 (in which case the two p-values lower than 0.05/9, here, should be considered significant). In
either case, n80s for NC subjects are not significantly different among the surface-based methods. At 12
months, the two LDA-based methods give statistically indistinguishable results. P-values below the
uncorrected α=0.05 level are shown in bold.

PCA vs. Tikhonov PCA vs. stat-ROI Tikhonov vs. stat-ROI

MCI AD NC MCI AD NC MCI AD NC

0.545 0.437 0.419 0.00475 0.200 0.0366 0.0035 0.256 0.0529
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Table 3b

P-values estimating the evidence that the true 12-month n80 (sample size requirement) of the first method is
equal to or greater than that of the second method. For LDA, continuous weighting gives better results, but the
difference is only significant when using unsigned masking. For stat-ROI, masking is better, but the
improvement is not significant. P-values below the uncorrected α=0.05 level are shown in bold.

PCA vs. signed LDA-ROI PCA vs. unsigned LDA-ROI Stat-ROI vs. t-stat weighting

MCI AD NC MCI AD NC MCI AD NC

0.27697 0.43547 0.27105 0.00037 0.15134 0.00421 0.30627 0.48339 0.35982
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Table 4a

Sample size estimates for clinical trials, using ventricular change over 24 months as an outcome measure.
Depending on how the features on the ventricular surfaces are weighted, the sample size estimates can be
reduced, and the power of the study increased. The two LDA-based methods (top two rows) show lower
sample size estimates than the stat-ROI approach. Control subjects’ average atrophy now approaches that of
MCI subjects in magnitude. Bold entries represent the lowest point estimates for sample size requirements
among the listed methods.

MCI AD NC Mean MCI Mean AD Mean NC

PCA 80/62
(65,108)/(44,86)

67/47
(47,122)/(31,67)

69/74
(54,91)/(57,102)

71
(65,98)

57
(45,89)

72
(52,89)

Tik. 73/60
(57,99)/(42,87)

63/41
(44,117)/(26,63)

60/80
(47,82)/(62,105)

67
(54,84)

52
(38,76)

70
(48,82)

Stat-ROI 141/96
(113,193)/(69,130)

93/66
(69,150)/(43,98)

119/122
(89,177)/(92,182)

119
(98,149)

80
(61,108)

121
(90,179)

Vol. – – – 191
(157,258)

119
(88,169)

196
(155,253)
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Table 4b

Sample size estimates for clinical trials, using ventricular change over 24 months as an outcome measure,
modified by change in controls. The NC-modified analogues to Table 4a show a marked increase in required
sample size. The 2-class model greatly outperforms all other ventricular measures, with ventricular volume
performing on par with the best 1-class surface measures: unsigned LDA-ROI and Stat-ROI. Bold entries
represent the lowest point estimates for sample size requirements among the listed methods.

MCI AD Mean MCI Mean AD

PCA 1170/1373
(659,2758)/(689,4240)

426/276
(240,1157)/(165,576)

1272
(760,2239)

351
(222,610)

Tik. 1661/1595
(859,4892)/(737,6306)

534/302
(286,1743)/(167,747)

1628
(902,3440)

418
(261,875)

Stat-ROI 852/1171
(529,1610)/(623,3171)

266/241
(169,509)/(150,449)

1011
(660,1704)

254
(176,379)

t-stat 840/1298
(517,1628)/(670,3708)

238/249
(152,433)/(157,459)

1069
(697,1880)

244
(171,355)

PCA
 sign.

1480/1380
(794,3803)/(681,4488)

482/244
(257,1309)/(140,527)

1430
(835,2674)

363
(229,676)

PCA
 uns.

841/1133
(514,1650)/(611,2958)

238/233
(150,444)/(147,423)

987
(641,1696)

235
(167,357)

2-class 461/628
(290,841)/(380,1244)

115/174
(76,191)/(112,306)

544
(371,802)

145
(101,192)

Vol. – – 916
(658,1385)

253
(182,372)
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Table 5

P-values estimating the chance that the true 24 month n80 of the first method is equal to or greater than that of
the second method. Null distributions were created by bootstrapping 100,000 samples with replacement. Note
that depending on how rigorous one is about hypothesis testing, the true p-values may need a Bonferroni
correction by a factor of 3, if one accepts a separate correction for each subset of the data, or 9. The
improvement of the Tikhonov-LDA method over the stat-ROI approach reaches significance, when
uncorrected, for AD subjects. At 24 months, the improvement in power when using Tikhonov-regularized
LDA model over the PCA model approaches trend levels for MCI subjects. P-values below the uncorrected
α=0.05 level are shown in bold.

Tikhonov vs. PCA PCA vs. stat-ROI Tikhonov vs. stat-ROI

MCI AD NC MCI AD NC MCI AD NC

0.129 0.257 0.334 0.00249 0.11 0.00278 0.0001 0.0276 0.00076
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Table 6

Longitudinal bias analysis of ventricular surface-based measures. Change in healthy controls is linearly
regressed over two time points. The intercept is very close to zero, with the confidence interval clearly
containing zero for each method. The surface-based measures do not show any algorithmic bias according to
the CI test.

PCA Tikhonov T-stat 2-class
LDA Signed LDA-ROI Unsigned LDA-ROI Stat-ROI

0.0064
 (−0.0218, 0.06)

0.0048
(−0.0126, 0.0242)

−0.0102
(−0.0617, 0.0416)

0.0172
(−0.0031, 0.036)

−0.0031
(−0.0208, 0.0143)

−0.0189
(−0.0665, 0.0304)

0.0115
(−0.0411, 0.0645)
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Table 7b

Ventricular surface summary atrophy measures for discrete weightings. Discrete analogues of results in Table
7a, because negative weights are allowed in signed LDA-ROI, the normalized average expansion is closer to
the 2-class LDA result, while the unsigned version is closer to stat-ROI and t-statistic weighting. Standard
deviations are in italics.

stat-ROI Signed LDA-ROI Unsigned LDA-ROI

MCI AD NC MCI AD NC MCI AD NC

12 months 0.262±0.21 0.367±0.22 0.158±0.14 0.0602±0.042 0.0796±0.046 0.0411±0.035 0.226±0.2 0.328±0.2 0.132±0.13

24 months 0.468±0.32 0.690±0.39 0.306±0.21 0.108±0.06 0.14±0.068 0.083±0.046 0.438±0.3 0.652±0.36 0.284±0.19

Neuroimage. Author manuscript; available in PMC 2014 April 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gutman et al. Page 44

Table 8

Number of ADNI subjects used for computing sample size estimates in Figs. 9 and 10.

AD MCI

Quarc 131 311

FreeSurfer 135 320

BSI 144 334

SIENA 85 195

TBM Stat-ROI 138 326

Medial Vent-LDA 144 337
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